cpp-toolbox  0.0.1
A toolbox library for C++
Loading...
Searching...
No Matches
toolbox::pcl::loam_feature_extractor_t< DataType, KNN > Class Template Reference

LOAM (Lidar Odometry and Mapping) 特征提取器 / LOAM (Lidar Odometry and Mapping) feature extractor. More...

#include <loam_feature_extractor.hpp>

Inheritance diagram for toolbox::pcl::loam_feature_extractor_t< DataType, KNN >:

Classes

struct  loam_result
 

Public Types

enum class  feature_label : uint8_t { none = 0 , edge = 1 , planar = 2 }
 
using base_type = base_keypoint_extractor_t< loam_feature_extractor_t< DataType, KNN >, DataType, KNN >
 
using data_type = typename base_type::data_type
 
using knn_type = typename base_type::knn_type
 
using point_cloud = typename base_type::point_cloud
 
using point_cloud_ptr = typename base_type::point_cloud_ptr
 
using indices_vector = typename base_type::indices_vector
 

Public Member Functions

 loam_feature_extractor_t ()=default
 
std::size_t set_input_impl (const point_cloud &cloud)
 
std::size_t set_input_impl (const point_cloud_ptr &cloud)
 
std::size_t set_knn_impl (const knn_type &knn)
 
std::size_t set_search_radius_impl (data_type radius)
 
void enable_parallel_impl (bool enable)
 
indices_vector extract_impl ()
 
void extract_impl (indices_vector &keypoint_indices)
 
point_cloud extract_keypoints_impl ()
 
void extract_keypoints_impl (point_cloud_ptr output)
 
loam_result extract_labeled_cloud ()
 
void set_edge_threshold (data_type threshold)
 
void set_planar_threshold (data_type threshold)
 
void set_curvature_threshold (data_type threshold)
 
void set_num_scan_neighbors (std::size_t num)
 
data_type get_edge_threshold () const
 
data_type get_planar_threshold () const
 
data_type get_curvature_threshold () const
 
std::size_t get_num_scan_neighbors () const
 

Static Public Member Functions

static point_cloud extract_edge_points (const loam_result &result)
 
static point_cloud extract_planar_points (const loam_result &result)
 
static point_cloud extract_non_feature_points (const loam_result &result)
 
static indices_vector extract_edge_indices (const std::vector< uint8_t > &labels)
 
static indices_vector extract_planar_indices (const std::vector< uint8_t > &labels)
 

Detailed Description

template<typename DataType, typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
class toolbox::pcl::loam_feature_extractor_t< DataType, KNN >

LOAM (Lidar Odometry and Mapping) 特征提取器 / LOAM (Lidar Odometry and Mapping) feature extractor.

Template Parameters
DataType数据类型(float或double) / Data type (float or double)
KNN最近邻搜索算法类型,默认使用 kdtree_generic_t / K-nearest neighbor search algorithm type, defaults to kdtree_generic_t

LOAM特征提取器专门用于激光雷达点云,提取边缘点和平面点特征,常用于SLAM应用 / LOAM feature extractor is designed for LiDAR point clouds, extracting edge and planar features commonly used in SLAM applications

Member Typedef Documentation

◆ base_type

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
using toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::base_type = base_keypoint_extractor_t<loam_feature_extractor_t<DataType, KNN>, DataType, KNN>

◆ data_type

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
using toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::data_type = typename base_type::data_type

◆ indices_vector

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
using toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::indices_vector = typename base_type::indices_vector

◆ knn_type

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
using toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::knn_type = typename base_type::knn_type

◆ point_cloud

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
using toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::point_cloud = typename base_type::point_cloud

◆ point_cloud_ptr

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
using toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::point_cloud_ptr = typename base_type::point_cloud_ptr

Member Enumeration Documentation

◆ feature_label

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
enum class toolbox::pcl::loam_feature_extractor_t::feature_label : uint8_t
strong
Enumerator
none 
edge 
planar 

Constructor & Destructor Documentation

◆ loam_feature_extractor_t()

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::loam_feature_extractor_t ( )
default

Member Function Documentation

◆ enable_parallel_impl()

template<typename DataType , typename KNN >
void toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::enable_parallel_impl ( bool  enable)

◆ extract_edge_indices()

template<typename DataType , typename KNN >
loam_feature_extractor_t< DataType, KNN >::indices_vector toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_edge_indices ( const std::vector< uint8_t > &  labels)
static

◆ extract_edge_points()

template<typename DataType , typename KNN >
loam_feature_extractor_t< DataType, KNN >::point_cloud toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_edge_points ( const loam_result result)
static

◆ extract_impl() [1/2]

template<typename DataType , typename KNN >
loam_feature_extractor_t< DataType, KNN >::indices_vector toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_impl ( )

◆ extract_impl() [2/2]

template<typename DataType , typename KNN >
void toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_impl ( indices_vector keypoint_indices)

◆ extract_keypoints_impl() [1/2]

template<typename DataType , typename KNN >
loam_feature_extractor_t< DataType, KNN >::point_cloud toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_keypoints_impl ( )

◆ extract_keypoints_impl() [2/2]

template<typename DataType , typename KNN >
void toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_keypoints_impl ( point_cloud_ptr  output)

◆ extract_labeled_cloud()

template<typename DataType , typename KNN >
loam_feature_extractor_t< DataType, KNN >::loam_result toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_labeled_cloud ( )

◆ extract_non_feature_points()

template<typename DataType , typename KNN >
loam_feature_extractor_t< DataType, KNN >::point_cloud toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_non_feature_points ( const loam_result result)
static

◆ extract_planar_indices()

template<typename DataType , typename KNN >
loam_feature_extractor_t< DataType, KNN >::indices_vector toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_planar_indices ( const std::vector< uint8_t > &  labels)
static

◆ extract_planar_points()

template<typename DataType , typename KNN >
loam_feature_extractor_t< DataType, KNN >::point_cloud toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::extract_planar_points ( const loam_result result)
static

◆ get_curvature_threshold()

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
data_type toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::get_curvature_threshold ( ) const
inline

◆ get_edge_threshold()

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
data_type toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::get_edge_threshold ( ) const
inline

◆ get_num_scan_neighbors()

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
std::size_t toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::get_num_scan_neighbors ( ) const
inline

◆ get_planar_threshold()

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
data_type toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::get_planar_threshold ( ) const
inline

◆ set_curvature_threshold()

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
void toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::set_curvature_threshold ( data_type  threshold)
inline

◆ set_edge_threshold()

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
void toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::set_edge_threshold ( data_type  threshold)
inline

◆ set_input_impl() [1/2]

template<typename DataType , typename KNN >
std::size_t toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::set_input_impl ( const point_cloud cloud)

◆ set_input_impl() [2/2]

template<typename DataType , typename KNN >
std::size_t toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::set_input_impl ( const point_cloud_ptr cloud)

◆ set_knn_impl()

template<typename DataType , typename KNN >
std::size_t toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::set_knn_impl ( const knn_type knn)

◆ set_num_scan_neighbors()

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
void toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::set_num_scan_neighbors ( std::size_t  num)
inline

◆ set_planar_threshold()

template<typename DataType , typename KNN = kdtree_generic_t<point_t<DataType>, toolbox::metrics::L2Metric<DataType>>>
void toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::set_planar_threshold ( data_type  threshold)
inline

◆ set_search_radius_impl()

template<typename DataType , typename KNN >
std::size_t toolbox::pcl::loam_feature_extractor_t< DataType, KNN >::set_search_radius_impl ( data_type  radius)

The documentation for this class was generated from the following files: